Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Control Release ; 350: 256-270, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35963467

RESUMO

Since the recent clinical approval of siRNA-based drugs and COVID-19 mRNA vaccines, the potential of RNA therapeutics for patient healthcare has become widely accepted. Lipid nanoparticles (LNPs) are currently the most advanced nanocarriers for RNA packaging and delivery. Nevertheless, the intracellular delivery efficiency of state-of-the-art LNPs remains relatively low and safety and immunogenicity concerns with synthetic lipid components persist, altogether rationalizing the exploration of alternative LNP compositions. In addition, there is an interest in exploiting LNP technology for simultaneous encapsulation of small molecule drugs and RNA in a single nanocarrier. Here, we describe how well-known tricyclic cationic amphiphilic drugs (CADs) can be repurposed as both structural and functional components of lipid-based NPs for mRNA formulation, further referred to as CADosomes. We demonstrate that selected CADs, such as tricyclic antidepressants and antihistamines, self-assemble with the widely-used helper lipid DOPE to form cationic lipid vesicles for subsequent mRNA complexation and delivery, without the need for prior lipophilic derivatization. Selected CADosomes enabled efficient mRNA delivery in various in vitro cell models, including easy-to-transfect cancer cells (e.g. human cervical carcinoma HeLa cell line) as well as hard-to-transfect primary cells (e.g. primary bovine corneal epithelial cells), outperforming commercially available cationic liposomes and state-of-the-art LNPs. In addition, using the antidepressant nortriptyline as a model compound, we show that CADs can maintain their pharmacological activity upon CADosome incorporation. Furthermore, in vivo proof-of-concept was obtained, demonstrating CADosome-mediated mRNA delivery in the corneal epithelial cells of rabbit eyes, which could pave the way for future applications in ophthalmology. Based on our results, the co-formulation of CADs, helper lipids and mRNA into lipid-based nanocarriers is proposed as a versatile and straightforward approach for the rational development of drug combination therapies.


Assuntos
Tratamento Farmacológico da COVID-19 , Nanopartículas , Animais , Antidepressivos Tricíclicos , Cátions , Bovinos , Combinação de Medicamentos , Reposicionamento de Medicamentos , Células HeLa , Humanos , Lipídeos/química , Lipossomos , Nanopartículas/química , Nortriptilina , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Coelhos
2.
ACS Nano ; 15(5): 8095-8109, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33724778

RESUMO

RNA therapeutics are poised to revolutionize medicine. To unlock the full potential of RNA drugs, safe and efficient (nano)formulations to deliver them inside target cells are required. Endosomal sequestration of nanocarriers represents a major bottleneck in nucleic acid delivery. Gaining more detailed information on the intracellular behavior of RNA nanocarriers is crucial to rationally develop delivery systems with improved therapeutic efficiency. Surfactant protein B (SP-B) is a key component of pulmonary surfactant (PS), essential for mammalian breathing. In contrast to the general belief that PS should be regarded as a barrier for inhaled nanomedicines, we recently discovered the ability of SP-B to promote gene silencing by siRNA-loaded and lipid-coated nanogels. However, the mechanisms governing this process are poorly understood. The major objective of this work was to obtain mechanistic insights into the SP-B-mediated cellular delivery of siRNA. To this end, we combined siRNA knockdown experiments, confocal microscopy, and focused ion beam scanning electron microscopy imaging in an in vitro non-small-cell lung carcinoma model with lipid mixing assays on vesicles that mimic the composition of (intra)cellular membranes. Our work highlights a strong correlation between SP-B-mediated fusion with anionic endosomal membranes and cytosolic siRNA delivery, a mode of action resembling that of certain viruses and virus-derived cell-penetrating peptides. Building on these gained insights, we optimized the SP-B proteolipid composition, which dramatically improved delivery efficiency. Altogether, our work provides a mechanistic understanding of SP-B-induced perturbation of intracellular membranes, offering opportunities to fuel the rational design of SP-B-inspired RNA nanoformulations for inhalation therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteína B Associada a Surfactante Pulmonar , Animais , Linhagem Celular Tumoral , RNA Interferente Pequeno/genética
3.
Eur J Pharm Biopharm ; 157: 191-199, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33022391

RESUMO

RNA interference (RNAi) enables highly specific silencing of potential target genes for treatment of pulmonary pathologies. The intracellular RNAi pathway can be activated by cytosolic delivery of small interfering RNA (siRNA), inducing sequence-specific gene knockdown on the post-transcriptional level. Although siRNA drugs hold many advantages over currently applied therapies, their clinical translation is hampered by inefficient delivery across cellular membranes. We previously developed hybrid nanoparticles consisting of an siRNA-loaded nanosized hydrogel core (nanogel) coated with Curosurf®, a clinically used pulmonary surfactant (PS). The latter enhances both particle stability as well as intracellular siRNA delivery, which was shown to be governed by the PS-associated surfactant protein B (SP-B). Despite having a proven in vitro and in vivo siRNA delivery potential when prepared ex novo, clinical translation of this liquid nanoparticle suspension requires the identification of a long-term preservation strategy that maintains nanoparticle stability and potency. In addition, to achieve optimal pulmonary deposition of the nanocomposite, its compatibility with state-of-the-art pulmonary administration techniques should be evaluated. Here, we demonstrate that PS-coated nanogels can be lyophilized, reconstituted and subsequently nebulized via a vibrating mesh nebulizer. The particles retain their physicochemical integrity and their ability to deliver siRNA in a human lung epithelial cell line. The latter result suggests that the functional integrity of SP-B in the PS coat towards siRNA delivery might be preserved as well. Of note, successful lyophilization was achieved without the need for stabilizing lyo- or cryoprotectants. Our results demonstrate that PS-coated siRNA-loaded nanogels can be lyophilized, which offers the prospect of long-term storage. In addition, the formulation was demonstrated to be suitable for local administration with a state-of-the-art nebulizer for human use upon reconstitution. Hence, the data presented in this study represent an important step towards clinical application of such nanocomposites for treatment of pulmonary disease.


Assuntos
Produtos Biológicos/administração & dosagem , Técnicas de Transferência de Genes , Nanogéis , Fosfolipídeos/administração & dosagem , Surfactantes Pulmonares/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Terapêutica com RNAi , Administração por Inalação , Aerossóis , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo , Liofilização , Humanos , Pulmão/metabolismo , Nanomedicina , Nebulizadores e Vaporizadores , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Surfactantes Pulmonares/química , Surfactantes Pulmonares/metabolismo , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
4.
ACS Nano ; 14(4): 4774-4791, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32250113

RESUMO

Small nucleic acid (NA) therapeutics, such as small interfering RNA (siRNA), are generally formulated in nanoparticles (NPs) to overcome the multiple extra- and intracellular barriers upon in vivo administration. Interaction with target cells typically triggers endocytosis and sequesters the NPs in endosomes, thus hampering the pharmacological activity of the encapsulated siRNAs that occurs in the cytosol. Unfortunately, for most state-of-the-art NPs, endosomal escape is largely inefficient. As a result, the bulk of the endocytosed NA drug is rapidly trafficked toward the degradative lysosomes that are considered as a dead end for siRNA nanomedicines. In contrast to this paradigm, we recently reported that cationic amphiphilic drugs (CADs) could strongly promote functional siRNA delivery from the endolysosomal compartment via transient induction of lysosomal membrane permeabilization. However, many questions still remain regarding the broader applicability of such a CAD adjuvant effect on NA delivery. Here, we report a drug repurposing screen (National Institutes of Health Clinical Collection) that allowed identification of 56 CAD adjuvants. We furthermore demonstrate that the CAD adjuvant effect is dependent on the type of nanocarrier, with NPs that generate an appropriate pool of decomplexed siRNA in the endolysosomal compartment being most susceptible to CAD-promoted gene silencing. Finally, the CAD adjuvant effect was verified on human ovarian cancer cells and for antisense oligonucleotides. In conclusion, this study strongly expands our current knowledge on how CADs increase the cytosolic release of small NAs, providing relevant insights to more rationally combine CAD adjuvants with NA-loaded NPs for future therapeutic applications.


Assuntos
Nanopartículas , Ácidos Nucleicos , Cátions , Endossomos , Humanos , Lisossomos , RNA Interferente Pequeno
5.
Pharmaceutics ; 11(9)2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31450805

RESUMO

Two decades since the discovery of the RNA interference (RNAi) pathway, we are now witnessing the approval of the first RNAi-based treatments with small interfering RNA (siRNA) drugs. Nevertheless, the widespread use of siRNA is limited by various extra- and intracellular barriers, requiring its encapsulation in a suitable (nanosized) delivery system. On the intracellular level, the endosomal membrane is a major barrier following endocytosis of siRNA-loaded nanoparticles in target cells and innovative materials to promote cytosolic siRNA delivery are highly sought after. We previously identified the endogenous lung surfactant protein B (SP-B) as siRNA delivery enhancer when reconstituted in (proteo) lipid-coated nanogels. It is known that the surface-active function of SP-B in the lung is influenced by the lipid composition of the lung surfactant. Here, we investigated the role of the lipid component on the siRNA delivery-promoting activity of SP-B proteolipid-coated nanogels in more detail. Our results clearly indicate that SP-B prefers fluid membranes with cholesterol not exceeding physiological levels. In addition, SP-B retains its activity in the presence of different classes of anionic lipids. In contrast, comparable fractions of SP-B did not promote the siRNA delivery potential of DOTAP:DOPE cationic liposomes. Finally, we demonstrate that the beneficial effect of lung surfactant on siRNA delivery is not limited to lung-related cell types, providing broader therapeutic opportunities in other tissues as well.

6.
J Control Release ; 291: 116-126, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30321577

RESUMO

Pulmonary surfactant (PS) has been extensively studied because of its primary role in mammalian breathing. The deposition of this surface-active material at the alveolar air-water interface is essential to lower surface tension, thus avoiding alveolar collapse during expiration. In addition, PS is involved in host defense, facilitating the clearance of potentially harmful particulates. PS has a unique composition, including 92% of lipids and 8% of surfactant proteins (SPs) by mass. Although they constitute the minor fraction, SPs to a large extent orchestrate PS-related functions. PS contains four surfactant proteins (SPs) that can be structurally and functionally divided in two groups, i.e. the large hydrophilic SP-A and SP-D and the smaller hydrophobic SP-B and SP-C. The former belong to the family of collectins and are involved in opsonization processes, thus promoting uptake of pathogens and (nano)particles by phagocytic cell types. The latter SPs regulate interfacial surfactant adsorption dynamics, facilitating (phospho)lipid transfer and membrane fusion processes. In the context of pulmonary drug delivery, the exploitation of PS as a carrier to promote drug spreading along the alveolar interface is gaining interest. In addition, recent studies investigated the interaction of PS with drug-loaded nanoparticles (nanomedicines) following pulmonary administration, which strongly influences their biological fate, drug delivery efficiency and toxicological profile. Interestingly, the specific biophysical mode-of-action of the four SPs affect the drug delivery process of nanomedicines both on the extra-and intracellular level, modulating pulmonary distribution, cell targeting and intracellular delivery. This knowledge can be harnessed to exploit SPs for the design of unique and bio-inspired drug delivery strategies.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Proteínas Associadas a Surfactantes Pulmonares/química , Surfactantes Pulmonares/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Surfactantes Pulmonares/metabolismo
7.
Acta Biomater ; 78: 236-246, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30118853

RESUMO

Despite the many advantages of small interfering RNA (siRNA) inhalation therapy and a growing prevalence of respiratory pathologies, its clinical translation is severely hampered by inefficient intracellular delivery. To this end, we previously developed hybrid nanoparticles consisting of an siRNA-loaded nanosized hydrogel core (nanogel) coated with Curosurf®, a clinically used pulmonary surfactant (PS). Interestingly, the PS shell was shown to markedly improve particle stability as well as intracellular siRNA delivery in vitro and in vivo. The major aim of this work was to identify the key molecular components of PS responsible for the enhanced siRNA delivery and evaluate how the complexity of the PS coat could be reduced. We identified surfactant protein B (SP-B) as a potent siRNA delivery enhancer when reconstituted in proteolipid coated hydrogel nanocomposites. Improved cytosolic siRNA delivery was achieved by inserting SP-B into a simplified phospholipid mixture prior to nanogel coating. This effect was observed both in vitro (lung epithelial cell line) and in vivo (murine acute lung injury model), albeit that distinct phospholipids were required to achieve these results. Importantly, the developed nanocomposites have a low in vivo toxicity and are efficiently taken up by resident alveolar macrophages, a main target cell type for treatment of inflammatory pulmonary pathologies. Our results demonstrate the potential of the endogenous protein SP-B as an intracellular siRNA delivery enhancer, paving the way for future design of nanoformulations for siRNA inhalation therapy. STATEMENT OF SIGNIFICANCE: Despite the therapeutic potential of small interfering RNA (siRNA) and a growing prevalence of lung diseases for which innovative therapies are needed, a safe and effective siRNA inhalation therapy remains non-existing due to a lack of suitable formulations. We identified surfactant protein B (SP-B) as a potent enhancer of siRNA delivery by proteolipid coated nanogel formulations in vitro in a lung epithelial cell line. The developed nanocomposites have a low in vivo toxicity and show a high uptake by alveolar macrophages, a main target cell type for treatment of inflammatory pulmonary pathologies. Importantly, in vivo SP-B is also critical for the developed formulation to obtain a significant silencing of TNFα in a murine LPS-induced acute lung injury model.


Assuntos
Técnicas de Transferência de Genes , Polietilenoglicóis/química , Polietilenoimina/química , Proteolipídeos/química , Proteína B Associada a Surfactante Pulmonar/química , RNA Interferente Pequeno/administração & dosagem , Terapia Respiratória , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/terapia , Animais , Linhagem Celular , Modelos Animais de Doenças , Feminino , Inativação Gênica , Humanos , Lipopolissacarídeos , Camundongos Endogâmicos BALB C , Nanogéis , Fosfolipídeos/química , Polietilenoglicóis/toxicidade , Polietilenoimina/toxicidade , Proteolipídeos/toxicidade , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA